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J. Phys: Condens. Matter 4 (1992) 5189-5206. Printed in the UK 

First-principles pseudopotential calculations for hydrogen in 
4d transition metals: I. Mixed-basis method for total energies 
and forces 

K M Hot, C Els&sser$, C T Chant and M Fahnlet 
t Am= laboratory (USDOE) and Department 01 Physics, Iowa State University, Am- 
Iowa 50011, USA 
t Max-Planck-lnstitut fiir Metallforschung, Institut liir Physik, Heisenbergstrasse 1, 
D-7000 Stuttgart 80, Federal Republic of Germany 

Received 23 December 1991 

Abstract. A first-principles study of hydrogen in transition metals within the flamework 
of the Born-Oppenheimer and local density-lundional approximations using a mixed- 
basis pseudopotential method is presented in this work, which consists of two paw. In 
this first pan our computational techniques are outlined. The fkatures of the norm- 
consenring ionic pseudopolentiah, the mixed basis and the calculation of total energies 
are summarized. A mixed-basis formalism lor the calculation 01 forces on atoms in 
crystals, using the Hellmann-Feynman theorem and including contributions originating 
from the atomcentred localized functions in the mixed basis, is described in detail and 
applied to lhe example of restoring foolres in PdH. An application to a study olvibrational 
properties of hydrogen isotopes in Pd and Nb will follow in the second p a n  

1. Introduction 

The calculation of electronic, structural or magnetic properties of crystals from first 
principles, i.e. with only knowledge of the constituent elemenrs as input, has become 
a very successful field of solid state physics during the last 15 years. Several efficient 
computational methods based on the local density-functional approximation (LDA) 
(Hohenberg and Kohn 1964, Kohn and Sham 1965, for a recent review see e.g. 
Jones and Gunnarsson 1989) as well as powerful electronic computers are available 
nowadays to calculate complex properties of single crystals and compounds across 
the periodic system of elements in a quantitative manner (see e.g. the reviews of 
Srivastava and Weaire 1987 or Pickett 1989). 

Ideal single ctystals or compounds are described by their unit cells with periodic 
boundary conditions. For the treatment of localized defects l i e  vacancies or inter- 
stitial atoms, two different strategies have been developed (see e.g. Dederichs and 
Zeller 1981): the Green function method and the supercell approach. 

In the Green function method the defect is embedded into the ideal host structure. 
The Green function of the crystal with the defect can be calculated from the Green 
function of the ideal crystal and the scattering potential of the defect by solving the 
Dyson equation. 

In the supercell approach a single defect in a crystal is replaced by a periodic 
superlattice of defects, which need to be separated sufficiently to make their mutual 
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interaction negligible. Thus the crystal is described by a large unit cell with periodic 
boundary conditions containing one defect and several host-lattice atoms. 

Conceptually the Green function method is very appealing, but it is technically 
demanding and difficult to achieve sufficient numerical accuracy for total energies. 
With the supercell approach the same computational techniques are used for the 
system with and without the defect. But one has to be careful that the size of the 
supercell, which is commonly limited by the computer memory and time, is sulficiently 
large to avoid spurious effects of the artificially periodic defect structure. 

Our present contribution, which consists of two parts, is a first-principles study of 
the vibrational states of interstitial hydrogen isotopes in transition metals by means 
of a supercell approach. In this first part we present our computational techniques 
for the calculation of total energies and forces in crystals. The paper is organized 
in the following way: Section 2 introduces the two basic assumptions of our method: 
the Bom-Oppenheimer approximation (BOA) (Born and Oppenheimer 1927) allows 
the formal separation of electronic and ionic motion in a quantum-mechanical system 
for the calculation of static and dynamic properties of crystals, and the electronic 
ground-state structure for a given ionic configuration is calculated by means of the 
LDA (Hohenberg and Kohn 1964, Kohn and Sham 1965). The calculation of electron 
densities, total energies and forces for transition metals using a mixed-basis pseu- 
dopotential method (Louie et a1 1979) is outlined in sections 3 and 4. The non-local 
norm-conserving ionic pseudopotentials (Hamann et a1 1979, Bachelet and Schliiter 
1982), the mixed-basis method (Louie el a1 1979, Elsaser et a1 1990) and the Fourier- 
space total-energy formalism (Ihm er a1 1979, Yin and a h e n  1982) used for our study 
are already described extensively in the literature. Therefore we restrict ourselves to 
giving only the basic relations. But the mixed-basis force formalism (Ho et a1 1983), 
which has already been applied successfully several times (see e.g. Ho and Bohnen 
1987, Ho and Harmon 1990), was only explained concisely. It will be discussed in 
detail in section 5, and applied to an example in section 6. To obtain accurate results 
for the electronic forces, it is necessary to take into account contributions originating 
from the atom-centred basis functions in the mixed basis (Ho et a1 1983). 

An application of the mixed-basis method to a study of vibrational properties of 
hydrogen isotopes in Pd and Nb (Elsasser 1990, Elsasser et a1 1991a,b) will be given 
in the second part (Elsssser et a1 1992, denoted by 11). 

2. Born-Oppenheimer approximation 

The Born-Oppenheimer approximation for the many-particle system of atomic nuclei 
and electrons assumes that, owing to the large mass difference between nuclei and 
electrons (Mj > me), the many-body states can be approximated by product states: 

where the electrons are adiabatically following the nuclei and are always in their 
ground state with respect to the instantaneous nuclear configuration. X ,  or 2, 

denote space and spin coordinates of a nucleus or an electron, respectively. Then the 
total energy of the whole system can be calculated in two steps: 
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'7? is the many-body Hamiltonian for the Nn nuclei and the Ne electrons. In the 
first step the ground-state energy E; E (+ol'7?l+o) of the electrons is calculated for 
given nuclear positions using the density-functional formaiim (Hohenberg and Kohn 
1964): 

G({Rjl) = G[PI = min{Ee[P1311 (3) 

where the total energy Ee is a unique functional of the electron density 5, and its 
minimum E; is obtained for the correct ground-state density p. In the second step 
the dynamics of the nuclei is calculated: 

The nuclei are moving in an adiabatic potential which is given by the energy hyperface 
E; in the configuration space {R>}  ,of the nuclear positions. 

Equation (4) is the starting point for both statics (relaxations) and dynamics 
(local or collective vibration modes) of atoms in a crystal. Static relaxation means 
the search for the minimum of E ; ( { R , } )  with respect to the nuclear positions R,. 
For the dynamics of the nuclei their kinetic energies Pf/2mJ have to be taken into 
account. 

In our case of hydrogen in transition metals the Bom-Oppenheimer approxima- 
tion is invoked once again for a separation of the motion of the light interstitial 
hydrogen atoms and the motion of the heavy hostmetal atoms. The relatively slow 
motions of the metal atoms are neglected, so that the hydrogen atoms are moving in 
a stiff metal lattice. By choosing crystal unit cells containing just one hydrogen atom, 
the total energy in equation (4) is obtained by solving a one-particle Schrodinger 
equation for the eigenstates 14) in a periodic potential. This will be described in 
detail in 11. 

3. Ionic pseudopotentials and mixed basis 

In the density-functional formalism the density of the valence electrons in a crystal is 
given by 

The sum is over all n occupied one-particle states calculated on a cubic mesh of 
k-points in the first Brillouin zone. The sum can be restricted to the irreducible part 
(IBz), but then the density additionally needs to be symmetrized (see appendix B in 
Elsasser er a1 1990). The symmetry weights of the 12-points and the band occupations 
are contained in the weights w , ~ ,  which are calculated using a Gaussian smearing 
scheme (Fu and Ho 1983; see also appendix 1 here). 

Wavefunctions @,,k(r) and eigenvalues E,* are given as solutions of a 
SchrMinger-like equation: 

B+'nk(T) = (-v2 + ' ) @ n k ( T )  = enk@nk(T) (6) 
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for a fictitious system of non-interacting electrons, which move in an effective potential 

v = vm + qom (7) 
and have the same density p ( ~ )  as the interacting electrons of the real system. In 
this work atomic Rydberg units are used: h2 = 2m, = e2/2 = 1. Energies are given 
in Rydbergs (1 Ryd = 13.606 eV), lengths in Bohr radii (1 au = 0.529 A). 

Ron represents the external potential exerted by the ions on the electrons and is 
given by the superposition of ionic pseudopotentials. PHx represents the screening 
potential of the electrons and contains two terms: the electrostatic Hartree potential 
VH(r) ,  which is a solution of Poisson's equation 

V2VH(r) = -8np(r) (8) 
and the exchangecorrelation potential VXc(v), which is given in the LDA as a function 
of the local electron density p ( r )  by the derivative d(pe,,(p))/dp), where ex,(p) 
represents the exchangecorrelation energy density of a homogeneous electron gas 
of density p in real space. For a periodic crystal the Hartree potential is given in 
Fourier space by V, = 8np(G)/IGIZ. The singular component VH(G = 0) causes 
an infinite energy shift in the eigenvalue problem (equation (10) below), which is 
exactly compensated in the total energy formula (equation (11) below). Thus it can 
be set to zero arbitrarily. The set of equations (5)-(S), usually called the Kdtn-Sham 
equations, is iterated to find the self-consistent ground-state density and effective 
potential. 

The electronic suuctures, densities and total energies are calculated in the LDA. 
The parametrization of Hedin and Lundqvist (1971) for the exchangeforrelation 
energy was used for this work. 

In the pseudopotential theory the interaction of the valence electrons with the 
closed-shell core electrons and the nuclei is taken into account by ionic seudopoten- 
tials. We used non-local norm-consewing pseudopotentials for the Pd'" and Nb5+ 
ion cores. They were constructed from relativistic atomic LDA eigenstates following 
the scheme of Hamann, Schliiter and Chiang (Hamman ef al 1979, Bachelet and 
Schliiter 1982). 'For Ht a local nom-conserving pseudopotential derived from the 
Coulomb potential of a proton and its analytic 1s state was chosen. For its construc- 
tion Kerker's (1981) scheme was used, which was modified to avoid edges and kinks 
in the potential in real space and thus to give a rapid decay in Fourier space. The 
angular-momentum dependent components of the ionic pseudopotentials are shown 
in figure 1. As a test of their transferability the eigenvalues and excitation energies 
of several atomic configurations from all-electron and pseudopotential calculations 
are compared in the tables 1-3. In our calculations of crystalline properties Fourier 
components Y,Jq)  were taken into account up to qmu = 16 au-I. 

To solve the SchrOdinger equation (6) for crystals the wavefunctions +nk(r) are 
represented by an energy-independent mixed basis of plane waves and localized func- 
tions (Louie et ai 1979, ElsBsser et ai 1990): 

The expansion coefficients agk and pi;"m are then obtained as eigenvectors G n k  of 
the generalized eigenvalue problem: 

n k v k  = E , k ~ k + n k  (10) 
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Figure 1. Radial pam of the angular-momentum dependent ionic pseudopotentials of 
Pd (lett) and Nb (middle) and of the local pseudopotential of H (right) in real space 
(upper panels) and in Fourier space (lower panels), the corresponding ionic Coulomb 
potentials are d r a w  by broken c u m .  

Table 1. Comparison of atomic valence-state eigenvalues and excitation energies of Pd 
from pseudopotential (reference configuration [I~r]4d9-55s0~255po~ZS) and (in paren- 
theses) all-electron calculations m the WA. 

Atomic 
mnRgurations 

Valence-sfale Excitation 
eigenvalues (Ryd) energies (Ryd) 

d S 4 P  

[Kr]4d105s05pa 

[Kr]4dg5d5p0 

[Kr]4d95s05p1 

[K r] 4d8 5s2 5p0 

[Kr]4d85s15p1 

([Kr]4ds5s"5p")+ 

([Kr]4d85s1Spo)+ 

([Kr]4da5s05p')+ 

-0.3227 

-0.5160 
(-0.5143) 
-0.6466 

(-0.3~8) 

(-0,6447) 
-0.7411 

(-0,7316) 
-0.8646 

(-0.8531) 

- 1.0999 

-1,3510 
(- 1.3441) 
-1.4539 

(- 1.1007) 

(-1.4452) 

-0.2718 
(-0.2710) 
-0.3462 

(-0.3476) 
-0.4377 

(-0.4386) 
-0.42213 

(-0.4252) 
-0.5050 

(-0.5070) 

-0.8394 

-0.9434 
(-0.9473) 
-1.0116 

(-0.8407) 

(-1.0150) 

- 0.031 1 
(- 0.0308) 
-0.0713 

(-0,0724) 
-0.1421 

(-0.1429) 
-0.1078 

(-0.1106) 
-0.1704 

(-0.1727) 

-0.4737 
(-0,4750) 
-0.5494 

(-0.5541) 
-0.ho86 

(-0.6129) 

D 
(0) 
0.1076 

(0.1074) 
0.3916 

(0.3917) 
0.3498 

(0.3420) 
0.6737 

(0.6660) 

0.6956 
(0.6967) 
1.0271 

1.4250 
(1.4201) 

(1.0229) 

where H k  and S k  are the Hamiltonian and overlap matrix, respectively (see ap- 
pendix 2). 
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Table 2 Comparison of alomic valence-state eigenvalues and excitation energies of Nb 
from pseudopotential (reference mneguration [Kr]4d3 4s5s'~455p0~1) and (in paren- 
theses) all-elstmn calculalions in the WA. 

Atomic 
"igurations 

[Kr]4d35s25p0 

[K r]4d4 5s'5po 

[Kr]4dS5s05p0 

[Kr]4d'5s05p' 

[Kr]4d35s1 5p1 

Valence-state Excitation 
eigenvalues (Ryd) energies (Ryd) 

d S P 
. 

-0.36W -0.3625 -0.1198 0 
(-0.3586) (-0.3630) (-0.120n (0) 
~ - a z i i  
(-0.2428) 
-0.1594 

(-0,1605) 
-am0 

(-0.3253) 
-0.4455 

(-0.4432) 

'-0.3148' 
(-0.3141) 
-0.28W 

(-0.2779) 
-0.3737 

(-03741) 
-0.4207 

(-0.4214) 

., '-0.0" a0398 

-om13 ai390 

(-0.1445) (02632) 

(-O.WS5) (0.0396) 

(-0.0786) (0.1356) 
-0.1447 02630 

-0.1662 0.2483 
(-0,1672) (0.2479) 

-0.7031 -0.7193 -0,4411 0.5535 
(-0.7086) (-0.7202) (-0.4403) (0.5532) 
-0.8593 -0.7965 -0.4969 0.5754 

(-0.8603) (-0.7987) (-0.4989) (0.5766) 
-0.9354 -0.8468 -0.5423 0.8771 

(-0.9355) (-0.8501) (-0.5451) (0.8786) 

Table 3, Comparison of t h e  eigenvalues e,, of the hydrogen problem and of the 
eigenvalues z i p A  and lotal energies E;,:: of self-mnsistenr IDA calculalions for H 
with lhe local pseudopotential (reference configuration Is') and (in parentheses) wilh 
the protonic Coulomb potential. 

State nl en, (Ryd) (Ryd) E;,:: (Ryd) 

IS -1IxNx)O2 -0.473547 -0.898060 
(-1) (-0,473550) (-0.898091) 

2s -0.249997 -0.148348 -0.253346 
c-t, (- 0.148354) (- 0.253355) 

2P -0.249993 -0.118529 -0.241612 
c-t, (-0.118530) (-0.241618) 

3s -0.1 111 10 -0.076265 - 0.121168 (-a) (- 0.07626S) (- 0.121171) 
3P -0.111109 -0.071471 -0.120195 

(4) (-0.071472) (-0.120198) 
3d -0.111111 -0.056884 -0.115350 

(-$) (-0.056884) (-0.115350) 

. . . , ,  .. 

Our mixed-basis method, wbich was originally developed by Louie et a1 (1979), 
has since been improved and was described in detail recently (ElsBsser ef ai 1990). An 
important feature of the method is that the localized basis functions are restricted to 
single atomic sites. This avoids the necessity for calculations of two-and three-centre 
integrals between different sites in real space, and it enables the accurate calculation 
of forces (Ho et ai 1983) in an efficient way. 
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4. Total energy and forces 

From the electron density calculated with the mixed-basis scheme in real space and 
transformed into Fourier space by means of fast Fourier-transform techniques (see 
e.g. chapter 12 in Press ef a! 1986), the total energy of a crystal can be calculated 
according to a Fourier-space formalism (Ihm ef al 1979, 1980, Yin and Cohen 1982). 
The total energy per unit cell is given by the formula (Fu and Ho 1983) 

nk 0 

where EEwdd gives the total-energy contribution from the interactions between the 
ionic cores calculated according to Ewald's method, Q, is the unit-cell volume, 2, 
are the charges of the ion cores, V&(G) are the Fourier components of the input 
screening potential of the Schriidinger equation for one iteration step, cXc(G) are 
the Fourier components of the exchangeerrelation energy density calculated from 
p(r), and ai contains the difference between the local part (1  = 0 component) of 
the ionic pseudopotential and the corresponding ionic Coulomb potential for the j t h  
atom: 

m 22, 
a. = ""J (y,,,(r) + -) r rz dr. ' 0 

The p*(G) are complex conjugate to the Fourier components p ( G )  of the electronic 
charge density. 

As mentioned in the introduction, equilibrium configurations of the crystal can be 
found via static relaxations by seeking the minimum of the energy hyperface E;(?,) 
(rj denote the atomic positions within one unit cell of a crystal; R, = rj + R; R 1s a 
lattice translation vector of the crystal lattice). The shape of the energy hyperface can 
be mapped out by calculating E; for a number of different sets of {r,}. For simple 
crystals with few atoms in the unit cell the relaxation paths of the atomic cores are 
found relatively easily using geometrical considerations. With increasing complexity 
of the unit cell the many degrees of freedom of the atoms lead to more and more 
complicated relaxation patterns requiring the calculation of E; for many coordinate 
sets. For such cases knowledge of the gradients of the energy hyperface at the atomic 
sites is of considerable help. They indicate the directions along which the atoms have 
to be shifted to reach the equilibrium configuration. 

The forces as negative gradients of the total energy can be calculated directly 
with the ab inih pseudopotential method. For a pure plane-wave basis the force 
calculation using the Hellmann-Feynman theorem is simple because the plane waves 
are independent of the atomic positions (Ihm et al 1979, Yin and Cohen 1982). 
But the application of this formalism is more or less restricted to crystals built from 
principal-group elements (simple metals or semiconduclors), because transition-metal 
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or rare-earth elements require too many plane waves to represent the d or f valence 
states. 

For all kinds of basis sets with atomrentred functions, which are better adapted 
to localized d or f systems, changes in the total energy due to virtual displacements 
of the basis functions lead to additional contributions to the forces, which have to be 
taken into acwunt (Ho et a1 1983). For basis functions centred at atomic sites with 
extensions over several neighbouring sites, e.g. Gaussians or augmented functions 
(augmented plane waves (APW) or muffin-tin orbitals (WO)), the force calculation is 
a very difficult problem, which is not yet completely overwme in the most wmmon 
first-principles methods, for example, the (linear) LMTO and LAPW methods (Andersen 
1975). 

The mixed-basis force formalism will be outlined in the following section, and its 
accuracy will be demonstrated by an example in section 6. 

5. Force formalism 

At self-consistency, the energy change due to virtual displacements of the atoms can 
be derived (Ho er U/ 1983) from the total-energy expression (11): 

6Ei = 6 & w d d + % x 6 W n k E n k +  R , x W n k 6 E n k - - ~ C P * ( G ) 6 1 1 H ~ ( G ) .  
n k  n k  0 

(13) 

The last term in equation (11) is independent of the atomic positions. Therefore 
it has no contribution to the energy change. The change of the interaction energy 
between the ion wres is given by 

and the FFWaid are the negative gradients of Ewald's formula with respect to T,.  

Energy changes due to incomplete self-consistency of the effective potential can 
be taken into account in principle if one makes an efficient estimate of 6 p .  Such a 
correction is not included in the present calculations. 

Thus, 

= 6 E E w a l d + n c C 6 W n k e n k + R c  W , k 6 E , k - - n , C W n k ( ? C ' n k 1 6 ~ H X l ? C ' n k ) .  
nk n k  " E  

(15) 

We now consider the change in the effective potential t', due to the atomic 
displacements. The change 6 r i  can be divided in the following ways: 

6t' = 6PHx + Sq,, = 6vHx + 6qbF + 6qzA = 6p" + 6p'. (16) 

The superscripts loc and nl stand for local and non-local parts, respectively, of the 
effective potential. The local part contains both qg and iLx and the non-local 
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pan comes only from the ionic pseudopotentials. With this separation, 6E; can be 
regrouped into the following expression: 

6Ei  = ~ E E , , ,  +a, p*(G)SYk(G) 
G#o 

f Rc Wnk(6enk - ( $ m k ~ 6 v ' o c ~ ~ n k ) )  + ac c 6 w n k E n k  (17) 
nk nk 

The first term arises from the interaction between the ionic cores, the second and 
third terms contain the change in electronic states due to virtual displacements of the 
atoms, and the fourth term comes from changes of the band occupations close to the 
Fermi energy in metallic systems. 

It is convenient to calculate the forces according to equation (17). From the 
local part of the ionic pseudopotential in Fourier space, which is given by (see equa- 
tion (AZ) in ElsBsser et a1 199u): 

?&(G) = x e x p ( - i G . ~ ~ ) V f , ~ ( G )  (19) 
i 

its change (second term in equation (17)) can he derived easily as 

6 V e ( G )  = x - i ( G .  6Tj)exp(-iG.Tj)y,,,(G). (20) 
j 

"king together the changes of the non-local part of the ionic pseudopotential and 
of the mixed basis (third term in equation (17)) several matrix elements, which are 
difficult to calculate, mutually cancel, as will become clear below. By applying the 
Gaussian smearing method the calculation of changes in the weights 6wnk can be 
traced back to the calculation of changes in the eigenvalues as described in 
appendix 1. 

The next task is the calculation of the matrix elements for the third term in 
equation (17). In the mixed-basis representation they are given by (see equation(7) 
in Ho et ai 1983) 

6znk = (a$)* agk(6(k + G'lfilk t G) - cnk6(k  + G'lk t G)) 
G',G 



In deriving these formulae, we used the information that the plane waves are inde- 
pendent of the atomic positions: 

a { ( l / ~ ) e x p [ i ( k + ~ ) . r ] } = o  (32) 
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and the transition from 64;im(r) to VpQ1oc can be obtained by expanding the 
localized functions in plane waves (see equation (7) in Elsiisser et a1 1990). 

6H&,,, - (k + G ' [ 6 ~ ' o c ~ k  + G) = (k + G'l6v"'Ik + G) 

Thus, 

I,.. 

= - i(G' - G )  . 6rj exp[i(G' - G )  . r j ]  q , , ( k  + G',k + G )  

6H5m,G - (q5t1m16pi0clk + G) = i G .  6rj(4flmI - V2 + p'"' + V'"'lk + G) 

(33) 
l=1 

+ (4fzmlVv~'oc[k + G) . 6rj (34) 

(35) 6H;r,m,,jim - (4~,i,m,~6~'0c~+~Im) = ( q 5 ~ , , , ~ , ~ V ~ ~ ' o c ~ 4 f , ~ )  6r j .  

The gradient V,Vioc for real-space matrix elements around the atomic position 
T~ contains two terms (see appendix 3): 

~ ~ V y ( r ' )  = V , ~ ' , ~ = ~ ( T ' )  + V,V,':i=l(r') 

(36) 
a q y  v') 

a+ ' 
= i G  exp(iG. rj)V'"'( G)jo( Gr') + e' 

The function ayLDC(r) /dr  (see equations (A3.4) and (A3.9)) is given by 

0 

(37) 
ayioc( r )  

ar 
= -E V1OC(G)exp(iG. T ~ ) G ~ ~ ( G T ) .  

0 

The matrix elements of Vvq;i=o are given by (q  = Ik + GI) 
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with the Clebsch-Gordan coefficients Cp,,,,,, 

and the radial integrals 

In the case that localized functions of only one angular momentum for each atom 
are used, e.g. 1 = I' = 2 for transition metals and 1 = 1' = 0 for hydrogen in our 
work the matrix elements (41) vanish. 

The fourth term of equation (17) is zero for semiconductors and insulators be- 
cause of their energy gap. Also for metals the contributions to the forces due to 
redistributions of a few states around the Fermi energy are usually small (Ho er af 
1983). This term can usually be neglected without degrading the accuracy of the 
calculated forces. 

To summarize the mixed-basis force formalism, it has been outlined how the 
force contributions from changes in the localized basis functions and in the band 
occupations can be taken into account to get correct forces in transition-metal systems. 
An essential ingredient for this is the choice of localized basis functions, which are 
restricted to single atomic sites to avoid multi-centred expressions, additional to the 
plane waves, which are extended over the whole unit cell volume. 

6. An example: restoring forces in PdH 

As an example to demonstrate the capability of the force formalism described in the 
preceding section we choose a face-centred cubic PdH unit cell. This metal-hydrogen 
system will be discussed extensively in paper 11, to which we refer the reader for more 
details. In this section we calculate the restoring forces that appear when the H atom 
is shifted away from the stable octahedral interstitial site at (4, 4, 4) by a vector 65, 
where 6 is the distance to the octahedral site, and i is a unit vector pointing along 
the direction of the displacement. The Pd atom is located at (O,O,O). 

The forces calculated directly are denoted by F 2 ,  where F is the magnitude of 
the force. In this simple example, the restoring forces are directed in the opposite 
direction to the displacements. These forces are compared with forces (AE;/Ax)la, 
which are determined by total-energy changes A E; connected with small finite shifts 
A+ around the displaced position 6. 

The forces at the H atom and, according to Newton's law (action = reaction), on 
the Pd atom in the PdH unit cell calculated in the two ways are given in table 4. 
Newton's law is fulfilled for the forces AE;/Axperdefnitionem, and for the forces F 
up to a few per cent. This slight discrepancy is related to the spherical approximation 
made fur the local part of the effective potential in the matrix elements containing 
localized functions (see appendix 3). But within this accuracy the directions and 
magnitude of the forces calculated in the two ways coincide. 

This simple example already demonstrates the high efficiency of the direct force 
calculation. For the calculation of F, on the one hand, for each displacement 6 
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Tabk 4 Restoring forces (Rydlau) on H and on Pd due to displacements 6 of H from 
the octahedral interslitial site in a PdH unit cell (a = 7.70 au = 4.07 A). The unit 
vector i. is given in Cartesian coordinates. 

j, (111) -0.0545 -0.0092 +0.0092 0.0lfi -/+0.0091 
-0.lW -0.M12 +O.OZll - /+O.O204 
-O.ZO& +0.0153 -0.0146 +/-0.0154 -& (110) -0.OSfi -0.0078 +0.0078 0,Olfi -/+O.W80 
- 0 . l M  -0.0346 + O . W  -/+0.0335 

-0.10 -0.0406 +O.OW - /+O.O117 
(001) -0.05 -0.0054 +0.0055 0.01 -/+o.M160 

one self-consistent total-energy calculation is necessary, and additionally the force 
calculation, which takes a computer-time amount of about one iteration step. For 
AE;/Ax, on the other hand, at least three total energies need to be calculated 
self-consistently for the displacements 6 and 6 & S x / 2 .  With increasing complexity of 
the unit cell, the force calculations become an increasingly efficient tool for relaxation 
studies because of the many atomic degrees of freedom. Furthermore, in principle 
they open up the possibility for an application of first-principles moleculardynamics 
schemes (Car and Parrinello 1985) to transition-metal systems. 

7. Summary 

In this contribution, which is the first of two papers about our first-principles study 
of hydrogen in transition metals, we outlined our computational techniques. The cal- 
culation of total energies in the frameworks of the Born-Oppenheimer and the local 
density-functional approximations was briefly reviewed. Non-local, norm-conserving 
ionic pseudopotentials for the interaction between valence electrons and ionic cores 
were applied, and a mixed basis of plane waves and atom-centred localized functions 
was wed for the representation of the valence wavefunctions in crystals. 

A detailed description of our mixed-basis formalism for the calculation of forces 
on atoms in a crystal is presented. The formalism had been successful in former 
applications but up to now it had been described only in a concise manner. 

To obtain accurate results for the electronic forces calculated with the Hellmann- 
Feynman theorem, it is necessary to include contributions due to changes of the 
atom-centred basis functions with atomic displacements. The accuracy of the method 
was demonstrated for an example of restoring forces in PdH. 

The second of our two papers deals with an application of our mixed-basis total- 
energy and force formalism to the study of local vibrations of interstitial H isotopes 
in Pd and Nb. 
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Appendix 1. Brillouin-zone summation 

Because of the infinite periodicity of crystalline unit cells with periodic boundary 
conditions (N + M) the N k vectors of Bloch functions are continuously distributed 
over the first Brillouin zone. Therefore sums over these ]E vectors can be replaced by 
integrals: 

(Al.1) 

Rchnically these integrals are commonly approximated by the trapezoidal rule with 
a finite number N ,  of sampling points K (Chadi and Cohen 1973, Monkhorst and 
Pack 1976) and the integrals reduce to sums again: 

(A1.2) 

The occupation numbers fnk of the single Bloch states with wavevector k are to be 
replaced by weights wnK for the occupation of bands around the sampling points K. 
In the following we adopt the common use to denote the sampling points by small k 
as well. 

For insulators and semiconductors the fully occupied valence bands have weights 
wnk = 2, the empty conduction bands wnI. = 0. For metals the weights wnk give 
the portion of bands in the volume represented by k which lies within the region 
limited by the Fermi energy This energy is defined as the energy for which the 
R, = N,/N electrons in the unit cell are just filling all states with < E ~ :  

1 -E w,k = ne. 
N s  nk 

(A1.3) 

Several methods are available for the determination of the weights wnk in metals, 
e.g. the linear tetrahedron method (Jepsen and Andersen 1971, Lehmann and n u t  
1972) or the Gaussian smearing method (Fu and Ho 1983, Needs et ai 1986). In 
this work the Gaussian smearing method was applied. Each of the discrete energy 
eigenvalues enk at a sampling point k is smeared by a Gaussian: 

(A1.4) 

The smearing constant A is chosen similar to the energy dispersion of the bands 
between neighbouring sampling points. The weights wnk are given then by Gaussian 
error functions 

(AIS) 

and the Fermi energy is calculated iteratively to fulfill equation (A1.3). 
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Besides the occupation numbers f n r  their changes 6fnk are needed for the 
calculation of forces. Like the fnk by the weights wnk the 6 f n k  are replaced by the 
changes 6wnk of the weights. These can be derived from equation (A1.5) as 

(A1.6) 

With the conservation of the number n, of electrons in the unit cell (see equation 
(A1.3)) 

and equation (AM), the change 6eF can be related to the se,,: 

(AM) seF = CnkeXP[- (EF - EnX)2/A216Enk 
C n k  exp[-(EF - Enk)2/az1 ‘ 

Equations (A1.6) and (A1.8) together give the final relation between the 6wnk and 
the 6 ~ ~ ~ .  

Appendix 2. Matrix representation 

Schrodinger’s equation (6) can be written formally as 

The crystalline wavefunctions IQnk) are expanded in a sufficiently complete, energy- 
independent basis set of Bloch functions l j k ) :  

where the lj,) are e.g. the plane waves or localized functions of the mixed basis. 
Insertion of (A2.2) in (A2.1) leads to the generalized algebraic eigenvalue problem 

which is commonly solved by CholesQ transformation to a standard eigenvalue prob- 
lem and diagonalization using numerical routines like the EISPACK library (see e.g. 
chapter 11 in Press et ul 1986). A considerably more efficient way of solving eigen- 
value problems for large matrices is possible by the use of iterative diagonalization 
techniques (Wood and Zunger 1985). In our calculations we used an algorithm orig- 
inally given by Davidson (1975) which, in connection with Broyden’s (1965) updating 
scheme (Vanderbilt and Louie 1984) for the effective potential in each iteration step, 
yielded a very fast convergence towards self-consistency. 
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For the calculation of forces, we write equation ( A 2 3 )  in matrix form as 

HJ, = cSJ, (-4-2.4) 

and then 

6HJ, + H6J, = 6eS+ + d S J ,  + eS6$ 

I l t (6H -cas)+ = 6e$tS$ -$'(H - E S ) ~ J ,  
1-4-23 

The last term vanishes because H and S are both Hermitian matrices and + satisfies 
equation (A24), then 

6~ = J,t(6H - 6S)J,.  

6 ~ , &  = (dTk)' (6(kIfil&) - ~ ~ ~ 6 ( i ~ l j ~ ) ) + 7 ~ .  (N.7) 

W . 6 )  

Inserting back the indices, 6 ~ , , ~  is finally given by 

i,j 

Appendix 3. Local part of the effective potential 

The local part of the effective potential in Schrodinger's equation (6) for a crystal is 
given in Fourier space by (cf equation (A2.) in Elstisser et 01 1990) 

V1"(G) = VHx(G)+ KLE(G) = V , , ( G ) + C ~ ~ ~ ( - ~ G . T ~ ) V , , , ( G )  (A3.1) 
j 

and in real space by the Fourier series (cf equation (A6) in Elsasser et al 1990): 

V"'(T) = CV'OC(G) exp( iG . r j ) exp[ iG .  ( T  - r j ) ] .  (-434 
G 

For the calculation of matrix elements with localized functions of the mixed 
basis, VloC(r) is expanded around a considered atomic site r j  (T' = P - rj) using an 
expansion theorem for plane waves (cf equation (12) in ElsBsser et a1 1990): 

V,'"(T') = z V ' ° C ( G )  exp(iG.Tj) z m t L  

4 ~ i L ~ L ( G ~ ' ) ~ ~ L M ( G ) ~ L ~ ( ~ ' )  
G L=D M = - L  

(-43.3) 

and then spherically approximated within a sphere around T~ with radius T,, by 
restriction to the term with L = 0 only (cf equation (A7) in Elsisser et a1 1990): 

V,'"(T') = CVIoC(G)  exp(iG.rj)j,(Gr'). (-43.4) 
G 
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For the force calculation we need the change 61/;F;(G) due to virtual displace- 
ments 6rj as well as the gradient VTl$oc(r'). 6y%(G) is obtained as 

The gradient V,l$oc(~') measures the change in YIoc(~') as VloC(r) is displaced. 
There are two contributions: 

V*q=(T') = v * j j y T ' )  + V,,Tp(r.').* (A3.6) 

The first term is the change due to the shift in the point of expansion rjand the 
second term is the gradient of voc(r ' )  with the point of expansion fixed. From 
equation (A3.4), this is given in real space within a sphere around r j  = r - r' by 

(A3.7) V - 5  lm ( r  I ) = Vioc(G) exp(iG. rj)[iGjo(Gr.') + V+j,(Gr')]. 
G 

The gradient of the spherical Bessel function is 

Vv,jo(Gr') = -Gjl(G~')i . '  W.8) 

and finally 

VvVim(~')  = Z i G  exp(iG.rj)VloC(G)jo(Gr') - i ' x G  
G G 
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